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ABSTRACT

The purpose of this paper is to introduce and investigate weak form
of D-precontinuous function in D-metric spaces, namely contra
and almost D-precontinuous functions via D-preopen sets. The
relationships among this form with the other known functions are
introduced.
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1. INTRODUCTION

In 1984, Dhage, [3], introduced a new notion of a new structure
of D-metric space which is a natural generalization of the notion
of ordinary metric space to higher dimensional metric spaces,
[4]. In 2000, Dhage, [2]], introduced some results in D-metric
spaces are obtained and the notion of open and closed balls. In
2017, Ali Fora, Massadeh and Bataineh, [1], introdused and a
new topological of D-closed set, D-continuous and D-xed point
property discussed of its properties, some result for this subject are
also established. structure of D-closed set. In 2021, Hussain and
Saif, [5], introduce and investigate weak form of D-open sets in
D-metric spaces, namely D-preopen sets. The relationships among
this form with the other known sets are introduced. They give
introduce the notions of the interior operator, the closure operator
and frontier operator via D-preopen sets. In 2021, Hussain and
Saif, [6], introduce and investigate weak form of D-continuous
functions in D-metric spaces, namely D-precontinuous functions .

This paper is organized as follows: Section 2 is devoted to some
preliminaries. In Section 3 we introduce the concepts of contra
and almost D-precontinuous functions via D-preopen sets. Further-
more, the relationship with the other known sets will be studied.

2. PRELIMINARIES

DEFINITION 2.1. [l Let f : (X, D) — (Y, P) be a func-
tion between two D-metric spaces (X, D) and (Y, P). Then f is
said to be D p-continuous at p € X provided that for any sequence
{zn} converging in (X, D) to p, then {f{x,)} must converge in
(Y, P) to f(p). A function f : (X,D) — (Y, P) is called Dp-
continuous if fis D p-continuous at each p in X.

By OP(z), we mean the D-open ball with center x and radius £ >
0, that is,

OED(m) ={ye X :d(z,y,y) <e}.

By CP(x), we mean the D-closed ball with center = and radius
e > 0, that is,

CP(z)={ye X :d(z,y,y) <e}.

The set G C X is called a D-open set in D-metric space (X, D)
if for every x € G, there is € > 0 such that OP (z) C G. The set
G is called D-closed set in D-metric space (X, D) if X — G is an
D-open set in D-metric space (X, D). For D-metric space (X, D)
and G C X, the interior set of G is denoted by Intp(G) and the
clouser set of G is denoted by Clp (G).

For D-metric space (X, D) and G C X is called a D-preopen set,
[5]], in D-metric space (X, D) if for every z € G, there is § > 0
such that for every y € OP(z), OP(y) N G # 0 for every € >
0. The set G C X is called a D-preclosed set in D-metric space
(X,D) if X — G is a D-preopen set in D-metric space (X, D).
Recall, [S], that they introduced the interior operator, the closure
operator and frontier operator via D-preopen sets. The set G C
X, the D p-interior set of G is denoted by Int2(G) and the Dp-
clouser set of G is denoted by C12(G). For a subset G of D-metric
space (X, D), the D-frontier operator of G is defined by

I'2(G) = CIB(G) — IntB(G).

DEFINITION 2.2. [lIl]. Let f : (X,D) — (Y, P) be a func-
tion between two D-metric spaces (X, D) and (Y, P). Then f
is said to be Dp-weakly continuous at p € X provided that
for any P-open set H in'Y containing f(p), there exists a D-
open set U in X containing p such that f(U) C H. A function
f + (X,D) — (Y, P) is called Dp-weakly continuous if f is
D p—weakly continuous at each p in X.

THEOREM 2.3. [l]. Let f : (X,D) — (Y, P) be a func-
tion between two D-metric spaces (X, D) and (Y, P). If f is Dp-
continuous function then f is D p—weakly continuous.

THEOREM 2.4. [U|]. The followings are equivalent for the func-
tion f : (X, D) — (Y, P) between two D-metric spaces (X, D)
and (Y, P).

(1) fis Dp-weakly continuous.
(2) Forany P-openset HinY , f~1(H) is D-open set in X.
(3) For any P-closed set M inY, f~1(M) is D-closed set in X.
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Recall, [5], every D-open set is a D-preopen set. For a D-metric
space (X,D) and G C X, CIB(G) is a D-preclosed set and
IntB(G) is D-preopen set in D-metric space (X, D). For a D-
metric space (X, D) and G C X, CIB(G) and Int2(G) that
G C CIB(G) and IntB(G) C G.

THEOREM 2.5. [Bl]. For a D-metric space (X, D) and G C
X, IntB(G) = G if and only if G is a D-preopen set.

THEOREM 2.6. [5)]. For a D-metric space (X,D) and G C
X, CI2(G) = G ifand only if G is a D-preclosed set.

DEFINITION 2.7. [l6]]. Let f : (X, D) — (Y, D’) be a func-
tion between two D-metric spaces (X, D) and (Y, D') is called
D-precontinuous if f~1(U) is a D-preopen set in (X, D) for every
D'-opensetU inY.

THEOREM 2.8. [6]. Let f : (X,D) — (Y, D’) be a func-
tion between two D-metric spaces (X, D) and (Y,D’) is a D-
precontinuous function if and only if for each x € X and each
D'-open set U in Y with f(z) € U, there exists a D-preopen set V'
in (X, D) such thatz € V and f(V) C U.

THEOREM 2.9. [6l]]. Every D-continuous function is D-
precontinuous function.

3. CONTRA AND ALMOST D-FUNCTIONS

DEFINITION 3.1. Let f : (X,D) — (Y, D’) be a function
between two D-metric spaces (X, D) and (Y, D') is called contra
D-precontinuous function if f~1(V) is a D-preclosed set in (X, D)
for every D'-open set V in'Y.

THEOREM 3.2. Let f : (X,D) — (Y,D’) be a function
between two D-metric spaces (X, D) and (Y, D’) is contra D-
precontinuous if and only if f~1(F) is a D-preopen set in (X, D)
for every D'-closed set F'inY.

PROOF. Suppose that f is contra D-precontinuous. Let G be
any D’-closed setin Y. Then Y — GG is an D’-open set in Y. Since
f is contra D-precontinuous then X — f~1(G) = f~1(Y — G) is
a D-preclosed set in (X, D). That is, f~1(G) is a D-preopen set in
(X, D). Conversely, Let G be any D’-opensetin Y. Then Y — G
is an D'-closed set in Y. Then by the hypothesis, f 1 (Y — G) =
X — f7Y(G) is aD-preopen set in (X, D). Thatis, f~*(G) is a D-
preclosed set in (X, D). Hence f is contra D-precontinuous. []

THEOREM 3.3. Let f : (X,D) — (Y,D’) be a function
between two D-metric spaces (X, D) and (Y, D’) is contra D-
precontinuous if and only if for each € X and each D’-closed
set G in Y containing f(z), there is a D-preopen set U in (X, D)
containing « such that f(U) C G.

PROOF. Suppose that f is contra D-precontinuous. Let x € X
and G be a D'~closed set in Y containing f(x). Then by the last
theorem, U = f~!(G) is a D-preopen set in (X, D). Since f(z) €
Gthenx € f1(G)=Uand f(U) = f(f1(G)) CG.
Conversely, Let G be a D'-closed set in Y. For each z € f~1(G),
f(x) € G. Then by the hypothesis, there is a D-preopen set U, in
(X, D) containing z such that f(U,) C G. Therefore, we obtain

FHG) =U{Us sa € fH(G)}

Then f~1(G) is a D-preopen set in (X, D). Hence by the last the-
orem, f is a contra D-precontinuous. [

THEOREM 3.4. The set of all points « in X at which f :
(X,D) — (Y, D’) be a function between two D-metric spaces
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(X, D) and (Y, D’) is not a contra D-precontinuous is identical
with the union of the D-frontier of the inverse images of D’-closed
sets of Y containing f(z).

PROOF. Suppose that f is not contra D-precontinuous at x €
X . Then by Theorem (4.3), there is a D’-closed set G in Y contain-
ing f(z) such that f(U) ¢ G for all D-preopen set U in (X, D).
containing z. That is, for all D-preopen set U in (X, D). containing
z, f(U)N (Y — G) # () and this implies

Unf Y —-G)#0.
Therefore we have
z e CIRIF (Y - G)) = CLRIX — f71(@).
However, since f(z) € G, then
z e [7H(G) CCIR[fHG)).
Then
z € CIP[X — fTHG)NCIE[f 1G] =T G

Conversely, Suppose that x € X and x € TEB[f1(GQ)] for
some D'-closed sets G in Y containing f(z). If f is a contra D-
precontinuous at x then there is D-preopen set U in (X, D). con-
taining « such that f(U) C G. Therefore we have z € U C
fYG). That is,

@ € Intp[f 1 (G)] CTE[fH(G)].

This is a contradiction. Hence by Theorem (3.3), f is not contra
D-precontinuous at x. [

DEFINITION 3.5. The kernel of a subset A of a D-metric space
(X, D) is denoted by Ker(A) and dened by Ker(A) = {U : A C
U and U is a D-open set inX }.

LEMMA 3.6. Let A and B be a subset of a D-metric space
(X, D). The following hold:

(1) = € Ker(A) if and only if AN U #  for any D-closed set U
containing x.

(2) A CKer(A) and A=Ker(A) if A is a D-open set in X.

(3) If A C B then Ker(A) C Ker(B).

PROOF.

(1) Let V be any D-closed subset of X, containing x. Suppose that
ANV = (). Then A C X —V. Sence X —V is D-open set, then
Ker(A)C X — V. Hence x € X — V but this is controdiction.
Therefore A NV # (). Conversely, Suppose that x ¢Ker(A).
Then there is at least D-open set containg A and x ¢ V. Then
X — V is D-closed set containing z and AN (X — V) = 0.
This is contradiction with the hypothesis. Hence x €Ker(A).

(2) By the definition of Ker(A), we get that A CKer(A). If A is D-
open set, then A is the smallest D-open set containing A. That
is, Ker(A)= A.

(3) Let x €Ker(A). Then by the part (1), ANV # @ for any D-
closed set V' containg x. Sence A C B, then BNV # (.
Hence x € Ker(B). That is, Ker(A)C Ker(B).

a

THEOREM 3.7. Let f : (X,D) — (Y, D’) be a function
between two D-metric spaces (X, D) and (Y, D’) is a contra D-
precontinuous if and only if f[CIB[(A)]] C Ker[f(A)] for every
subset A of X.
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PROOF. Suppose that f is a contra D-precontinuous. Let A be
any subset of X. Lety ¢ Ker[f(A)]. Then by Lemma (3.6), there
is a D'~closed set F' in Y containing y such that f(A) N F = 0.
Then AN f~1(F) = 0. Since F is a D’-closed setin Y and f is
a contra D-precontinuous then by Theorem (3.2), f~!(F) is a D-
preopen set in (X, D). Then X — f~1(F) is a D-preclosed set in
(X, D), that is,

CIPIX — fH(F)] = X — f71(F).
Since AN f~1(F) = (). then A C X — f~1(F), this implies,
CIR(A) CCIPIX — fH(F)] =X - 71(F)«

f
Hence CIB(A) N f~'(F) = 0. Then f[CIR(A)]NF = 0.
Hence y ¢ f[CIB(A)]. Therefore f[CIE(A)] C Ker[ A)].
Conversely, Suppose that f[CIB(A)] C Ker[f(A)] for revery s sub-
set A of X.Let V be any D’-open subset of Y. Then f~1(V ) C X.
Then by the hypothesis, f[CIB(f~1(V))] € Ker[f(f~1(V))].
Since V is a D’-open in Y then by Lemma (3.6),

FICIR(FH V)] € Ker[f(f7H(V)] € Ker(V) = V.

This implies, CIE(f~1(V)) C f~1(V), that is, f~}(V) is a D-
preclosed in (X, D). Hence f is contra D-precontinuous. [J

THEOREM 3.8. Let f : (X,D) — (Y,D’) be a function
between two D-metric spaces (X, D) and (Y, D’ ) is a contra D-
precontinuous if and only if CIB[f~1(B)] C f ![Ker(B)] for
every subset B of Y.

PROOF. Suppose that f is a contra D-precontinuous. Let B be
any subset of Y. Since f~1(B) is a subset of X and f is a con-
tra D-precontinuous then by the last theorem, f[CIB[f~1(B)]] C
Ker[f(f~1(B))]. This implies, then

JICIRI1(B)]] € Ker[f(f(B))] € Ker(B).

Hence CIR[f1(B)] C f *[Ker(B)]

Conversely, Suppose that CIB[f~1(B)] C f~![Ker(B)] forevery
subset B of Y. Let V' be any open subset of Y. By the hypothesis
and Lemma (3.6),

ClD[f’l(V)} S Ker(M)I € fH(V).

That is, CIB[f (V)] = f~Y(V) and so f~(V) is a D-preclosed
in (X, D). Therefore f is a contra D-precontinuous. [

DEFINITION 3.9. A subset A of a D-metric space (X, D) is
called r-open set if A = Intp(Clp(A)). The complement of r-
open set called r-closed set. A subset of a D-metric space is called
a D-preclopen set if it is both D-preopen and D-preclosed set.

DEFINITION 3.10. Let f : (X, D) — (Y, D') be a function
between two D-metric spaces (X, D) and (Y, D') is called:

(1) almost D-precontinuous if for each x € X and each open set
Vin'Y containing f(x), there is a D-preopen set U in (X, D)
containing x such that f(U) C Intp[Clp [f(U)]].

(2) almost contra D-precontinuous function if f~1(V) is a D-
preclosed set in (X, D) for every r-open set V in'Y.

(3) weakly D-precontinuous function, if for each x € X and each
D'-open set V in'Y containing f(x), there is a D-preopen set
U in (X, D) containing x such that f(U) C Clp/ (V).

THEOREM 3.11. Let f : (X,D) — (Y, D’) be a function
between two D-metric spaces (X, D) and (Y, D’) is almost con-
tra D-precontinuous if and only if f~!(F') is a D-preopen set in
(X, D) for every r-closed set F'in Y.
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PROOF. Itisclear. O

THEOREM 3.12. Let f : (X,D) — (Y, D') be a function
between two D-metric spaces (X, D) and (Y, D’) is almost contra
D-precontinuous if and only if for each z € X and each r-closed
set F'in Y containing f(z), there is a D-preopen set U in (X, D)
containing x such that f(U) C F.

PROOF. Suppose that f is almost contra D-precontinuous. Let
xz € X and F be ar-closed set in Y containing f(x). Then by the
last theorem, U = f~1(F) is a D-preopen set in (X, D). Since
f(z) € Fthenz € fY(F)=Uand f(U) = f(f ' (F)) C F.
Conversely, Let F' be a r-closed set in Y. For each z € f~1(F),
f(x) € F. Then by the hypothesis, there is a D-preopen set U, in
(X, D) containing z such that f(U,) C F. Therefore, we obtain

NWF)={U, :z € f1(F)}.

Then f~1(F) is a D-preopen set in (X, D). Hence by the last the-
orem, f is an almost contra D-precontinuous. [

It is clear that every contra D-precontinuous function is almost con-
tra D-precontinuous, since every r-preopen set is open.

THEOREM 3.13. Every almost contra D-precontinuous func-
tion is a weakly D-precontinuous.

PROOF. Let f : (X,D) — (Y,D’) be almost contra D-
precontinuous. Let x € X be any point in (X, D) and V' be any
D’-open set in Y containing f(z). Then

ClD/(V) = ClD/[IntD/(V)] - CZD/[I’I’LtD/(ClD/(V)).

CZD/ [IntD/(C’lD/(V))] Q ClD/ [CZD/(V)] == CZD/(V),

this implies, Clp/(V) = Clp[Intp(Clp(V))]. That is,
Clp (V) is r-closed set in Y containing f(z). Since f is almost
contra D-precontinuous then by Theorem (3.12), there is a D-
preopen set U in (X, D) containing x such that f(U) C Clp(V).
That is, f is a weakly D-precontinuous. [

The converse of the last theorem need not be true.

THEOREM 3.14. Let f : (X,D) — (Y, D’) be a function
between two D-metric spaces (X, D) and (Y, D’) is almost contra
D-precontinuous if and only if for each x € X and each r-open
set V' in Y non-containing f(z), there is a D-preclosed set U in
(X, D) non-containing z such that f~*(V) C U.

PROOF. Suppose that f is almost contra D-precontinuous. Let
z € X and V be a r-open set in Y non-containing f(x). Then
Y — V is a r-closed set in Y containing f(z). Then by Theorem
(3.12), there is a D-preopen set G in (X, D) containing x such that
f(G) CY—V.Thatis, U = X —Gis a D-preclosed setin (X, D)
non-containing = and so

GCI ' (X-G)Cf Y -V)=X [ (V)

Hence f"1(V) C X -G =T.

Conversely, Let x € X any point in X and F' be any r-closed set
in Y containing f(x). Y-F is r-open set in Y non-containing f(z).
Then by the hypothesis, there is a D-preclosed set G in (X, D)
non-containing x such that f~'(Y — F) C G.Hence U = X — G
is a D-preopen set in (X, D) containing x and

fO)=f(X-G) S fIX —f'(Y = F)] = ff " (F)]CF.

Then by Theorem (3.12), f is an almost contra D-precontinuous [
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THEOREM 3.15. If a function f : (X,D) — (Y, D) is a
D-precontinuous and contra D-precontinuous then f is an almost
D-precontinuous.

PROOF. Let z € X be any point in X and V be any D’-open
set in Y containing f(x). Since f ia contra D-precontinuous and
Clp/ (V) bea D'~closed setin Y containing f(z) then by Theorem
(3.12), there is a D-preopen set U in (X, D) containing x such that
f(U) C Clp (V). Since f is a D-preopen and U is a D-preopen
setin (X, D) then f(U) is D'-open setin Y and

fU) = Intp[f(U)] C Intp [Clp (f(U))] € Intp [Clp (V)]

This shows that f is an almost D-precontinuous. [
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